
AIJAOSS 515 VIRGINIA POL.YTECHNIC INST AND STATE UNIV WASHINGTON -(fTC fff 012
A SIP4LAA PROGRAM FOR SI.R(1) PARSING.(IJ)
JAN 80 .3 J MARTIN AFDSR-79-0021

IJNCLAS S IF IED VP1 AJTN..SO1AFOSRTR044 "LIN

*flf flf fl~f flf 7-

~-~%(J AFOS R~ 4 4 5 j r1s

VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE - P. 0. Bx 17186
GRADUATE PROGRAM IN NORTHERN VIRGINIA W'dsbmgso. D. C 20041

(703) 471.4600

. ..

A T4* PROGRAM FOR SLR (1) PARSING<_•

t~ohnnesJ.,/Martin

Technical $emoALum No. 80-1

/ -

- !/11/Jan mmop 9 8 0

.. / ij . ' (' ,

ABSTRACT

The report describes a SIMULA program that parses character
strings according to a grammar preprocessed by a parser genera-
tor 4-f. The program does not furnish error recovery. This
report provides all information necessary to use the program
including a detailed description of the format of the parse tree
produced and the symbol table employed.

Keywords and Phrases: SLR(l) parser, SIMULA

CR Categories: 4.12, 5.23

SIMULA is a registered trademark of the Norwegian Computing
Center, Oslo, Norway.

t Research sponsored by the Air Force Office of Scientific
Research, Air Force Systems Command, under Grant No. AFOSR-
79-0021. The United States Government is authorized to re-

r,. produce and distribute reprints for Governmental purposes
__. notwithstanding any copyright notation hereon.C)

LUJ

80 4 QbbUiO9uik14 7

Lo. a - Daf Iahiramdmo Akpm-400 Wt Swim RoW e

- _.
w - -m-------

Copyright, 1980

by

Johannes J. Martin

General permission to republish, but nor for profit, all or part
of this report is granted, provided that the copyright notice is
given and that reference is made to the publication (Technical
Memorandum No. 80-1, Department of Computer Science, Graduate
Program in Northern Virginia, Virginia Polytechnic Institute and
State University), to its date of issue and to the fact that re-
printing privileges were granted by the authors.

WxFS)
Al'

(7b)-

Preface

This report is addressed to those potential users of a context
free parser program who have a good background in the theory of
parsing. Also some elementary knowledge of the programming lan-
guage SIMULA is needed in order to understand the interface
required.

The report is meant to supply an expert programmer with all
information necessary for using the program and for assessing its
performance. It is not meant, however, to motivate the reader to
use this parser rather than some other parser program.

A second report (by Richard J. Orgass) that gives more back-
ground information, addresses some of the finer points of the
work and, thus, promotes its use may be forthcoming.

1. General Properties of the Parser.

The parser described in this report is an SLR(l) device.
Originally, it was written by F.C. Druseikis as part of the
interactive program verification system devised by D.E. Britton
(1977). The version descibed here has been extracted from the
verification program and enhanced by an improved file manipula-
tion system (DIALOG, Orgass,R.J.,1979). The program produces a
parse tree and an (optional) source listing from a given program
or program segment. Parsing is performed according to a parse
table which must have the format defined in (11 and hence may be
automatically produced by the parser generator described by the
same reference. (Aho and Ullman [21 is an excellent reference on
the theory of SLR parsing and the construction of actual par-
sers).

The parser program is written as a SIMULA CLASS named
sir_parser. The procedure (part of the CLASS slr_parser) which
does the actual parsing is called 'parse'.

Suppose, the file 'parsetbl' contains a parse table produced
by the parser generator mentioned. Then, the parser is initial-
ized by

REF(slr_parser) parser; REF(Infile) parsetbl;

parser :- NEW slrparser(parsetbl);

The parsing action itself is envoked by the function reference

. p. T . . .

tree:- parse(input, root);

Here 'input' is the program or program segment which is sup-
posed to be parsed. This program must first be packaged into to
an object of CLASS 'stream'. The purpose of this packaging step
is to allow both character strings (TEXT objects) as well as
files (Infile objects) to be used as input.

For the above example, this packaging could be done by either
of the following statements:

(i) input:-NEW stream(programtext, FALSE);

Here we assume that 'programtext' is a TEXT object;
therefore, the second parameter, which indicates
whether or not a file is used, is set to FALSE.

(ii) input:-NEW stream("PROG&M PLI", TRUE);

"PROGRM PLI" is the file name and file type of
of a file that contains the program to be parsed;
consequently, the second parameter is set to TRUE.

The second parameter of 'parse' ('root' in the example above)
is a TEXT object whose value is the name of the non terminal sym-
bol which is to be used as the starting symbol (root node) of the
parse tree. This name must be enclosed in angular brackets.

The value of 'parse' is an object of the CLASS 'parse tree'.
The description of the format of this CLASS and its consEituent
operations will make up most of the balance of this report.

The following program segment gives a complete example of the
use of 'sir_parser' and 'parse' with all necessary declarations.

REF(Infile) parse_tbl;
REF(slr_parser) parser;
REF(stream) input;
REF(parsetree) tree;

parser :- NEW slr_parser(parse tbl);

input :- NEW stream("PROG PL4", TRUE);

tree :- parse(input, "<pgm>");

If a source listing is to be produced, a file must be declared
and opened for receiving the listing. A special file type,
called a videofile, has been defined as part of the parser. This
file type provides both a SIMULA Outfile and an optional terminal
listing. The terminal listing can be supressed by setting the
variable 'blackout' equal to TRUE.

-2-

',

So, in order to obtain a source listing a videofile with the
name 'sourcelist' must be created. The following sequence of
code can be used to accomplish this.

REF(videofile) sourcelist;

sourcelist :- NEW videofile("MYPROG");

COMMENT: 'MYPROG' will be the file name of the
new file, the file type, since not given,
will be 'log' by default;

'O For"
sourcelist.blackout := FALSE; ." S I"D o

sourcelist.Open(Banks(80)); TAB|r
COMMENT: if LRECL = 80 is wanted; ,'Q-lcad

t y I

[rest of code for parsing etz..

sourcelist.Close; A- ft
Dist A' i dloz.

Sspecial

2. The Format of the Parse Tree.

2.1 Basic Information held in the Nodes of the Tree.

The parse tree produced is an object of the SIMULA CLASS
"parse tree'. This CLASS has several subclasses, each one dealing
with dTfferent type of a node of the tree.

These node types are

1) Nodes representing non-terminals (CLASS vnon),
2) identifiers (CLASS vidn) ,
3) numbers (CLASS vnum),
4) keywords and

other special symbols (e.g. -) (CLASS vsym).

All of these nodes contain the print representation of the
items they represent. For example '<formula>' or '<term>' would
be used in a 'vnon' node if 'formula' or 'term' were names of
nonterminals, 'begin', 'while' or ':=' may occur in a 'vsym'
node, '12' in a 'vnum' node and 'myname' in a 'vidn' node.

This information is provided so that a tree can be printed
with readably labelled nodes.

-3-

44
_ _ _.

In addition, nodes contain integer numbers, codes that refer
to symbols and productions. The node type 'vnon' contains three
such numbers, vnum two, vidn and vsym one.

The numbers in 'vnon' nodes have the following meaning: one
number refers to the non-terminal stored (lhs), one refers to the
right hand side of the production rule used (rhs) and the third
(size) equals the number of symbols occurring in the right hand
side of the production.

One of the numbers stored in a 'vnum' node is simply the con-
verted number represented by the node, the other is the code for
the symbol 'number'.

The numbers used in vsym nodes are codes for the respective
symbols, the number in a vidn node is the code for 'ident'. In
addition, vidn nodes contain pointers to the symbol table.

2.2 The Derivation of the Integer Codes for Symbols
and Productions.

The codes that refer to symbols and productions are derived
from the order in which these symbols and productions occur in
the grammar given to the parser generator. Thus, in order to
describe precisely the method by which these codes are con-
structed the input format for grammars as given to the parser
generator must be explained.

Consider the grammar
<pgm> -> <stmt list>.
<stmt list> ->-<stmt> I stmt list>;<stmt>
<stmt7 -> <term> := <su> t CALL ident
<sum> -> <sum> + ident ident
<term> -> ident I ident (<sum>)

This grammar is given to the parser generator as follows:

pgm stmt list
stmt list stmt-

stmt list ; stmt
stmt term := sum

CALL ident
sum sum + ident

ident
term ident

ident (sum

In short, a grammar is written one production per line; the
left hand side non-terminal starts in column 1; if a nonterminal
derives several right hand sides, then all these productions are
listed in consecutive lines and only the first production shows
the left hand non-terminal; the angular brackets around non-ter-
minals are left out.

-4-

. .. .

The parser needs, what is termed an augmented grammar; this is
derived from the actual grammar by adding the production

<S>-> I-w -1 where 'w'- is a place holder for the actual
starting symbol supplied with the call to 'parse' (see invocation
of the program 'parse' above).

In order to simplify the following description of the assign-
ment of integer codes to grammar symbols, it is convenient to
assume the the parser generator accounts for the augmentation by
prefixing the given grammar input with the line S' I- -T
with the new terminal symbols '7- and j, which serve as left
and right sentence delimiters.

Note: The symbols 'I- and '-I' are not used
to physically delimit the input sentence. Rather,
they are generated by the lexical scanner as signals
to the parser indicating the beginning and the end
of the input f ile.

2.21 Codes for Symbols.

From the augmented representation of the grammar, the integer
codes for the symbols are derived by
1) scanning the grammar left to right and top to bottom,
2) recording symbols in the order in which they are found,

non-terminals and terminals in seperate lists,
3) concatenating the lists when scanning is completed,
4) numbering the list elements consecutively starting

with 1.
5) The numbers so assigned are the integer codes applied.

For the sample grammar, the final list has the following
appearance:

1 S
2 pgm
3 stint list
4 stint
5 term
6 sum
7 I
8 -
9
10
11
12 CALL
13 ident
14 +

2.22 Codes for the Right Hand Sides.

The integer numbers assigned to the right hand sides of pro-
duction rules are simply the ordinal numbers of the alternatives
for a left hand side non-terminal.

A-5

For example, in the above grammar

'term := sum' would be called 1 whereas

'CALL ident' would be called 2.

2.3 The Format of the Nodes of the Parse Tree.

The actual format of the nodes is best explained by giving the
skeleton of the SIMULA CLASS definitions for 'parse-tree' and its
subclasses:

CLASS parsetree(printrep); TEXT print_rep;
END of CLASS parse_tree;

parse tree CLASS vnon(lhs,rhs,size); INTEGER lhs, rhs, size;
BEGIN REF(parsetree) ARRAY sons(l:size);
END of vnon;

parse-tree CLASS vidn(ste,token); REF(symbol) ste;
INTEGER token;

END of vidn;

parse tree CLASS vnum(val,token); INTEGER val, token;
END of vnum;

parsetree CLASS vsym(token); INTEGER token;

END of vsym;

Summary of the fields of the different classes:

1) In the superclass 'parse tree':
'print_rep' is the print representation of the symbol.

2) In the class 'vnon' (non-terminal):
'lhs' is the code of the non-terminal itself,
'rhs' is the ordinal number of the alternative

right hand side used,'size' is the number of symbols in the string
that constitutes the right hand side.

Not before mentioned:
'ARRAY sons(l:size)' contains the roots of the
subtrees to the nonterminal represented.

3) In the class "vnum" (number):
'val' is the converted (INTEGER) version of the

numeral represented,
'token' is the code for the terminal 'number'.

4) In the class 'vidn" (identifier):
'token' is the code of 'ident',
Aste' (symbol table entry) is the pointer
to the corresponding symbol table entry
(the format of such an entry is described below).

-6-

5) In the class 'vsym:.token' is the code of the keyword or operator
represented.

2.4 Procedures Provided for Parse Trees.

The following procedures are part of the CLASS parsetree and
of all of the subclasses:

REF(parse tree) PROCEDURE copy;

produces an independent copy of the given tree.

BOOLEAN PROCEDURE equals(x); REF(parse tree) x;

compares the given tree with the tree x supplied as
the parameter.

PROCEDURE ptre(pos); INTEGER pos;

prints an indented listing of the tree;
Apos' specifies the column in which printing is to start.
The different nodes are printed by the following formats:

vnon: "vnon" print rep lhs rhs size
vnum: "vnum" print-rep val token
vidn: "vidn" print-rep token

symbol syF val (see description of
symbol table entry below)

vsym: "vsym" printrep token.

3. The Symbol Table.

The symbol table is programmed as a tree dictionary; the nodes
of the tree are objects of the CLASS symbol:

CLASS symbol(sym,val); TEXT sym; INTEGER val;
BEGIN REF(symbol) left, right; END of symbol;

The field 'val' may be used for storing semantic information
after the parse is completed. Replacing the definition of0symbol' by one that has more fields is, of course, possible as
long as fields Osym' and 'val' remain present.

-7-

Lm

4. Error Handling.

The parser has originally been written for an experimental
interactive program verification system. Therefore, no error
recovery mechanism has been provided. Upon a syntax error, the
error is descibed by
1. giving the character position of the offending symbol,
2. printing the offending symbol and
3. printing a list of symbols acceptable in the

given position.
Execution then terminates; a NONE parse tree is returned.

The program is terminated in a procedure called 'enterdebug"
which, so far, does not do anything but write a short message and
stop. This program is the logical hook for any future error
recovery routine.

5. Availability.

The program is currently available at Virginia Tech's CMS
(Conversational Monitor System running on an IBM 370/158) on the
minidisk CSDULLES 191 under the name SLR SIMULA. The precise
rules for encorporating this parser into another program as well
as any later updates to this report will be found on the same
disk under the name SLR MANUAL.

References

1. Druseikis, F.C.
"SLR(l) Parser Generator, User's Manual,"
technical report, Dept. of Comp.Sci.,Univ. of Arizona,
March 1976.

2. Aho, A.V. and Ullman, J.D.
Principles of compiler design," Addison-Wesley 1977.

-8-

",'I

